
Impact of Training Function Based Neural
Network on Reusable Software Modules

Anupama Kaur

Computer Science Department, Swami Vivekanand Institute of Engineering and Technology
Punjab, India

Abstract— For the enhancement of quality in the software
development, to eliminate the repeated work and to improve
the efficiency, we require a effective solution that is software
reuse. But how to identify and evaluate the performance of
reusable software from the existing systems has remained the
task for developers. Defining metrics to reusable components
has given the structural analysis to the different procedures.
Neural Network’s training functions gives the oppurtutinity to
evaluate the attributes of reusability and work as the
automatic tool to define reusability of procedures by
calculation based on training. Metrics’s values turn as input
dataset for the Neural Network systems. In this paper,
different training functions of algorithms have been
experimented and results are recorded in terms of Accuracy,
Mean Absolute Error (MEA) and Root Mean Square Error
(RMSE). The proposed model defined in the future scope can
become a effective and efficient way to state the reusability of
software components.

Keywords— Software Reusability, Software Metric, Neural
Network, training function, Accuracy, MAE, RMSE

I. INTRODUCTION

Reusable software components have been promoted in
recent years. The software development community is
gradually drifting toward the promise of widespread
software reuse, in which any new software system can be
derived virtually from the existing systems. There are two
approaches for reuse of code: develop the code from scratch
or identify and extract the reusable code from already
developed code. With the existence of the software there is
less uncertainty in the cost of reusing which is an important
factor for project management as it reduces the margin of
error in project cost estimation. This is particularly true
when relatively large software components as sub-system
reused.

Reusing software can speed up system production
because both development and validation time should be
reduced. Thus the reuse of software in systems
development is a strategy that increases productivity and
quality. Code reuse is the idea that a partial or complete
computer program written at one time can be, should be, or
is being used in another program written at a later time. The
reuse of programming code is a common technique which
attempts to save time and energy by reducing redundant
work [5].

Tracz observed that for programmers to reuse software
they must first find it useful [2]. Experimental results
confirm that prediction of reusability is possible but it
involves more than the set of metrics that are being used [3].
According to Poulin [4], in some sense, researchers have

fully explored most traditional methods of measuring
reusability: complexity, module size, interface
characteristics, etc., but the ability to reuse software also
depends on domain characteristics. It means we should
concentrate on evaluating the software in terms of its
relevancy to a particular domain [1].

Major challenge is to develop a robust framework for
software reuse. There are two approaches for reuse of code:
develop the reusable code from scratch or identify and
extract the reusable code from already developed code. The
organizations that has experience in developing software,
but not yet used the software reuse concept, there exists
extra cost to develop the reusable components from scratch
to build and strengthen their reusable software reservoir [6].
The cost of developing the software from scratch can be
saved by identifying and extracting the reusable
components from already developed and existing software
systems or legacy systems [7]. But the issue of how to
identify reusable components from existing systems has
remained relatively unexplored. In both the cases, whether
we are developing software from scratch or reusing code
from already developed projects, there is a need of
evaluating the quality of the potentially reusable piece of
software [1].

Neural networks have seen an explosion of interest over
the years, and are being successfully applied across a range
of problem domains, in areas as diverse as finance,
medicine, engineering, geology and physics. Indeed,
anywhere that there are problems of prediction,
classification or control, neural networks are being
introduced. It can learn by example. In order to make a
neural network useful, the user needs to gather
representative data, and then invokes training algorithms to
train the neural network. Neural network learns about its
environment through a set of input-output training samples
and is an interactive process of adjustment applied to its
synaptic weights and bias levels [8].

The learning algorithm involves the following steps:

 The neural network receives the normalized inputs

that are available in the input-output training data
samples.

 The output of the artificial neural network is then
computed.

 The output of the network is then compared with
that given in the training data samples. The error in
the output is computed by taking the difference of
the desired output and computed output from the
network.

Anupama Kaur/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4024 - 4027

4024

 The synaptic weights and biases are then changed
so as to decrease the error based on the error
gradient with respect to the different synaptic
weights.

The process is repeated until the desired error goal is
achieved [9].

II. PROPOSED METHODOLOGY

The following steps are proposed in the methodology:

A. Selection of metric suit for function oriented paradigm

A framework of metrics is proposed for structural
analysis of procedure or function-oriented. The code of
software is parsed to calculate the metric values. The
following suits of metrics are able to target those the
essential attributes of function oriented features towards
measuring the reusability of software modules, so it tried to
analyze, refine and use following metrics to explore
different structural dimensions of Function oriented
components [9].

The proposed metrics for Function Oriented Paradigm
are as follows:
 Cyclometric Complexity Using Mc Cabe’s Measure

[10][11]
 Halstead Software Science Indicator [10] [12]
 Regularity Metric [10][12]
 Reuse-Frequency Metric [10][12]
 Coupling Metric [10]

B. Design & evaluate neural network system

The following four Neural Network algorithms are
experimented:

 Fletcher–Reeves Update Conjugate Gradient
(FRUCG) algorithm

 Polak–Ribiere Update Conjugate Gradient (PRUCG)
algorithm

 Powell-Beale Restarts Conjugate Gradient (PBRCG)
algorithm

 Scaled Conjugate Gradient (SCG) algorithm

The following training functions are being used
respectively for each algorithm above:

 tan-sigmoid transfer function (tansig) in hidden layer
as Sigmoid output neurons are often used for pattern
recognition problems.

 Linear transfer function (purelin) in output layer as
linear output neurons are used for function fitting
problems

The different Neural Network approaches are used for
the modelling of the reusability data as generated from the
previous step. For each approach following steps are used.

The following are the steps for each Neural Network
based system:

1) Phase I

The following steps will be followed to train a Neural
Network:
•Load the data
•Divide data into Training, Validation and Test data

•Set number of hidden neurons
•Training is accomplished by sending a given set of inputs
through the network and comparing the results with a set
of target outputs.

•If there is a difference between the actual and target
outputs, the weights are adjusted to produce a set of
outputs closer to the target values.

•Network weights are determined by adding an error
correction value to the old weight.

•The amount of correction is determined
•This Training procedure is repeated until the network
performance no longer improves.

2) Phase II

After training test the Neural Networks on the basis of
Accuracy, MAE and RMSE. The details of the MAE and
RMSE are given below:

 Mean absolute error (MAE)

Mean absolute error, MAE is the average of the
difference
between predicted and actual value in all test cases; it is the
average prediction error [13]. The formula for calculating
MAE is given in equation shown below:

ܧܣܯ ൌ
|భିభ|ା|మିమ|ାڮା|ି|

 (1)

Assuming that the actual output is a, expected output is c.

 Root mean-squared error (RMSE)

RMSE is frequently used measure of differences
between values predicted by a model or estimator and the
values actually observed from the thing being modeled or
estimated [14]. It is just the square root of the mean square
error as shown in equation given below:

ܧܵܯܴ ൌ
|భିభ|ା|మି మ|ାڮା|ି|

 (2)

C. Conclusions drawn

The conclusions are made on the basis of the results
calculated in the previous section.

III. IMPLEMENTATION AND RESULTS

In this paper, the implementation of the algorithm is
done in Matlab 7.4 environment and Neural Network
toolbox for Matlab is used. The dataset is collected and
Fletcher –Reeves Update Conjugate Gradient (FRUCG)
algorithm, Polak–Ribiere Update Conjugate Gradient
(PRUCG) algorithm, Powell-Beale Restarts Conjugate
Gradient (PBRCG) algorithm, Scaled Conjugate Gradient
(SCG) algorithm, based Neural Networks are experimented
with training functions tansig and purelin to obtain the
results in terms of Accuracy, MAE and RMSE values. The
same neural network is run for five times and the following
tables 1-4 are showing the Results of five different
iterations of four different Neural Network Based
algorithms for Identification of Reusable Modules in the
function based software systems.

Anupama Kaur/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4024 - 4027

4025

The table 5 shows the Mean Values of the Results of
tables means mean value of the results of five iterations. Fig
1-4 shows the training performance of the four different
Algorithms for Reusability dataset. The mean or average
result values of four algorithms under study as shown in
table 5 depict that the Accuracy, MAE and RMSE values of
the Fletcher–Reeves Update Conjugate Gradient (FRUCG)
algorithm is the best among four neural network based
algorithms experimented in the study with 100%, 0.013 and
0.0197 as Accuracy, MAE and RMSE values respectively.

TABLE I
RESULTS OF FLETCHER–REEVES UPDATE CONJUGATE GRADIENT

ALGORITHM
Algorithm Iterations Accuracy MAE RMSE

FRUCG

1 100 0.0076 0.0107

2 100 0.0366 0.0562

3 100 0.0080 0.0115

4 100 0.0065 0.0100

5 100 0.0063 0.0101

Fig 1.1 Training Performance of Fletcher–Reeves Update Conjugate

Gradient Algorithm

TABLE II

RESULTS OF POLAK–RIBIERE UPDATE CONJUGATE GRADIENT

ALGORITHM
Algorithm Iterations Accuracy MAE RMSE

PRUCG

1 100 0.0081 0.0124

2 100 0.0120 0.0192

3 100 0.0287 0.0444

4 100 0.0109 0.0150

5 100 0.0108 0.0167

Fig 1.2. Training Performance of Polak–Ribiere Update Conjugate

Gradient (PRUCG) algorithm

TABLE III
RESULTS OF POWELL-BEALE RESTARTS CONJUGATE GRADIENT

ALGORITHM

Algorithm Iterations Accuracy MAE RMSE

PBRCG

1 100 0.0532 0.0791

2 99.1 0.0533 0.0882

3 100 0.0284 0.0428

4 100 0.0162 0.0322

5 94.5 0.1435 0.1982

Fig 1.3 Training Performance of Powell-Beale Restarts Conjugate

Gradient (PBRCG) algorithm

TABLE IV
RESULTS OF SCALED CONJUGATE ALGORITHM

Algorithm Iterations Accuracy MAE RMSE

SCG

1 99.1 0.0567 0.0949

2 100 0.0566 0.0082

3 100 0.0072 0.0113

4 100 0.0034 0.0059

5 100 0.0044 0.0074

Fig 1.4 Training Performance of Scaled Conjugate Gradient (SCG)

algorithm

TABLE V
MEAN VALUES OF THE RESULTS OF TABLE I TO TABLE IV

Algorithm
Mean

Accuracy
Mean
MAE

Mean
RMSE

FRUCG 100 0.013 0.0197

PRUCG 100 0.0141 0.02154

PBRCG 98.72 0.05892 0.0865

SCG 99.82 0.02566 0.02554

Anupama Kaur/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4024 - 4027

4026

IV. CONCLUSIONS
In this research paper, five Neural Network based

approaches are experimented to develop the reusability
evaluation model for function oriented software systems.
Metric based approach is used for structural analysis of a
software module. McCabe’s Cyclometric Complexity
Measure for Complexity measurement, Regularity Metric,
Halstead Software Science Indicator for Volume indication,
Reuse Frequency metric and Coupling Metric are used.
Fletcher–Reeves Update Conjugate Gradient (FRUCG)
algorithm, Polak–Ribiere Update Conjugate Gradient
(PRUCG) algorithm, Powell-Beale Restarts Conjugate
Gradient (PBRCG) algorithm, Scaled Conjugate Gradient
(SCG) algorithm are experimented with the training
functions tansig and purelin . The Fletcher–Reeves Update
Conjugate Gradient (FRUCG) algorithm is the best among
five neural network based algorithms experimented in the
study with 100%, 0.013 and 0.0197 as Accuracy, MAE and
RMSE values respectively. The performance of the
Fletcher–Reeves Update Conjugate Gradient (FRUCG)
algorithm is found to be best as compare to other algorithms
that are recorded to calculate the mean result values. So,
algorithm with these training functions based approach can
be used for the Modeling of the reusable component based
on metrics discussed in this paper.

 It can be further to use other programming languages
and also more algorithms with other training functions such
as logsig, etc can be experimented to find the best
algorithm.

REFERENCES

[1] Parvinder S. Sandhu, Harpreet Kaur, and Amanpreet Singh
(2009)“Modeling of Reusability of Object Oriented Software System”
World Academy of Science, Engineering and Technology 56 2009.

[2] W. Tracz, A Conceptual Model for Mega programming, SIGSOFT
Software Engineering Notes, 16(3, July 1991) 36-45.

[3] Stephen R. Schach and X. Yang, Metrics for targeting candidates for
reuse: an experimental approach, ACM, (SAC 1995) 379-38.

[4] J. S. Poulin, Measuring Software Reuse–Principles, Practices and
Economic Models (Addison-Wesley, 1997).

[5] Ajay Kumar (2012) “measuring software reusability using svm based
classifier approach”, International Journal of Information Technology
and Knowledge Management January-June 2012, Volume 5, No. 1,
pp. 205-209.

[6] W. Lim, Effects of Reuse on Quality, Productivity, and Economics,
IEEE Software, 11(5, Oct. 1994), 23-30.

[7] G. Caldiera and V. R. Basili, Identifying and Qualifying Reusable
Software Components, IEEE Computer, (1991) 61-70.

[8] Sonia Manhas, Rajeev Vashisht, and Reeta Bhardwaj (2010)
“Framework for Evaluating Reusability of Procedure Oriented
System using Metrics based Approach”, International Journal of
Computer Applications (0975 – 8887), Volume 9– No.10, November
2010.

[9] Sonia Manhas, Rajeev Vashisht, Parvinder S. Sandhu and Nirvair
Neeru (2010) “Reusability Evaluation Model for Procedure Based
Software Systems”, International Journal of Computer and Electrical
Engineering, Vol.2, Dec, 2010.

[10] Parvinder Singh Sandhu and Hardeep Singh, “Automatic Reusability
Appraisal of Software Components using Neuro-Fuzzy Approach”,
International Journal Of Information Technology, vol. 3, no. 3, 2006,
pp. 209-214.

[11] T. MaCabe, “A Software Complexity measure”, IEEE Trans.
Software Eng., vol. SE-2 (December 1976), pp. 308-320.

[12] G. Caldiera and V. R. Basili, Identifying and Qualifying Reusable
Software Components, IEEE Computer, (1991), pp. 61-70.

[13] Herenji, H. R. and Khedkar, P (1992), “Learning and Tuning Fuzzy
Logic Controllers through Reinforcements”, IEEE Transactions on
Neural Networks, vol. 3, 1992, pp. 724-740.

[14] Challagulla, V.U.B., Bastani, F.B., I-Ling Yen, Paul, (2005),
“Empirical assessment of machine learning based software defect
prediction techniques”, 10th IEEE International Workshop, Object-
Oriented Real-Time Dependable Systems, WORDS 2005, 2-4 Feb
2005, pp. 263-270.

Anupama Kaur/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4024 - 4027

4027

